Promega Corporation

Refinement in the Use and Data Analysis of the Promega CellTiter 96® AQueous...

Refinement in the Use and Data Analysis of the Promega CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay

Share

  • Share
  • Print
  • Email
  • Download PDF

Abstract

The Promega CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay (Cat.# G5421) has been applied in our laboratory for in vitro cytotoxicity assessment of industrial chemicals. This assay uses the soluble tetrazolium salt, MTS, and it is versatile and offers several advantages over MTT and other cytotoxicity assays due to the solubility of   the MTS formazan product in tissue culture medium. However, there are some issues that need to be addressed while using the MTS-based assay. Issues include nonspecific interaction between MTS and test chemicals, and differences in results depending on the method used to determine IC50 (inhibitory concentration at 50%) values. HeLa cells exposed to test chemicals were assayed by the MTS assay. Two methods of IC50 determination were applied: the conventional method and the standard curve method. It was concluded that the IC50 value could be determined more accurately by the standard curve method.

Abdolreza Zarei, M. Eng. Sc., and Boban Markovic, Ph.D.

Chemical Safety and Toxicology Laboratories, School of Safety Science, University of New South Wales, Sydney 2052, Australia

Publication Date: 2000

Introduction

In recent years there has been a significant change in the way toxicity testing of test components is conducted. In general, the emphasis has changed from in vivo animal methods to in vitro toxicity methods. Following the introduction of in vitro assays, several groups have assessed the efficiency of testing chemicals in vitro. (1) (2) (3) (4) (5) (6) (7)   One such assay is the Promega CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay. This assay has several advantages that include ease of use, precision, and rapid determination of toxicity. (8)

Typically, in MTS-based assays, toxicity is determined using the dose-response curve to determine IC50, the concentration of the test substance required to reduce the light absorbance capacity of exposed cell cultures by 50%. However, IC50 values can also be determined by generating a standard curve consisting of a specified range of cell dilutions, because a 50% reduction in absorbance may not equate with a 50% reduction in cellular viability. This study investigated whether either method for determining IC50 affects the accuracy of the assay.

Materials and Methods

Test chemicals were selected by number from different categories in the Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) list (2) . Chemicals selected include: glycerol, malonic acid, nicotine, phenol, potassium hydroxide, sodium dichromate and sodium hydroxide. HeLa cell line (ATCC) was selected for this study due to its consistent growth and ease of maintenance. The cells were grown in 75cm2 tissue culture flasks. The culture growth medium consisted of a 1:1 ratio of DMEM (Dulbecco’s Modified Eagle’s Medium; Sigma) and RPMI-1640 (Sigma), supplemented with 10% newborn bovine serum (Trace Bioscience) and L-glutamine (1mM), penicillin (50U/ml) and streptomycin (0.05mg/ml) (Sigma).

MTS Assay

The CellTiter 96® AQueous Assay uses the novel tetrazolium compound (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS) and the electron coupling reagent, phenazine methosulfate (PMS). MTS is chemically reduced by cells into formazan, which is soluble in tissue culture medium. (8) The measurement of the absorbance of the formazan can be carried out using 96 well microplates at 492nm. The assay measures dehydrogenase enzyme activity found in metabolically active cells.

Since the production of formazan is proportional to the number of living cells, the intensity of the produced color is a good indication of the viability of the cells. MTS solutions were prepared according to the manufacturer’s instructions. (9) Stock PMS (Sigma) was dissolved in PBS at a concentration of 0.92mg/ml DPBS (0.92mg/ml PMS in DPBS is also included with the CellTiter 96® AQueous Assay System from Promega). The solutions were then stored in light-protected tubes at -20°C. MTS and PMS detection reagents were mixed, using a ratio of 20:1 (MTS:PMS), immediately prior to addition to the cell culture at a ratio of 1:5 (detection reagents:cell culture medium).

Chemical Treatment of Cells

To prepare stock solutions, usually as 10% w/v solutions, the chemicals were dissolved directly in culture medium. The stock solutions were filter-sterilized (0.22µm). The resultant solutions were kept at 4°C and used within 24 hours for the assay. Five separate serial dilutions of each test chemical in culture medium were prepared for addition to cells.

HeLa cell suspensions were prepared in a standard manner. (10) Culture medium was removed from the flask and the cells were rinsed three times with DMEM. Approximately 5ml of Trypsin EDTA solution (Trace Bioscience) were then added to the flask and incubated at 37°C for a few minutes. Cells were washed three times with fresh medium and resuspended at a concentration of 2 x 106 cells/ml. Only cells with viability greater than 95%, as determined by Trypan Blue dye exclusion, were used for testing.(9) The cell suspension was then added to each dilution of the test chemical at a ratio of 1:9 (cell suspension:test chemical solution).

The same series of dilutions was prepared without addition of cells as background control samples. These controls are essential for toxicity testing, as generation of 492nm absorbance often occurs, especially when high concentrations of test chemicals are added to the MTS and PMS assay mixture. (8) A sample of culture medium was used as a "medium-only" control (IC0). The same cell suspension as that prepared for the assay was also used as a "cell-only" control (IC100).

The final solutions were added, in four replicates, into a 96 well microplate (100µl in each well) using a multichannel pipettor. The microplate was then incubated in a humidified, 5% CO2 incubator at 37°C for 20 hours. The detection reagent was pipetted into each well of the microplate at a ratio of 1:5 (detection reagent:content of each well of microplate) (Figure 1). The microplate was incubated for another 4 hours under identical conditions.

Depiction of test sample layout of a 96 microwell plate.Figure 1. Depiction of test sample layout of a 96 microwell plate.
 

IC50 Determination by the Conventional Method

Background absorbance, due solely to the reaction of the reagents and each test chemical, was deducted from the absorbance values generated by the exposed cells. The level of background, in general, increases with the amount of test compound used in the assay. The mean absorbance (of four replicates) generated by the "medium-only" control is denoted as IC0. The mean absorbance generated by the "cell-only" control is denoted as IC100.

To determine the IC50 value, the IC50 absorbance value was first calculated using the following formula:

AbsIC50= (AbsIC100 + AbsIC0)
2

Then, the X-axis intercept of the dose-response curve at the point determined by the above formula was considered as IC50 value for each test chemical (Figure 2).

Conventional method of determining IC50 using the dose-response curve.Figure 2. Conventional method of determining IC50 using the dose-response curve.

IC50 Determination by the Standard Curve Method

A standard curve for HeLa cells was prepared for each set of experiments using the same solution of cells. A microplate containing 40 x 103 cells/ well was prepared. Then, five dilutions (20, 10, 5, 2.5 and 1.25 [ x 103cells/well])  were prepared from the original 40 x 103 cells/well. Cells were seeded by transferring the cell dilutions into the appropriate well of the microplate. Each dilution was performed in four replicates.

The absorbance values were recorded after incubating for 20 hours as described above. We performed the cell dilution plate alongside the exposed cells to generate the standard curve. Therefore, the exposed cells (for which we have defined a cell number) and cell dilution plate forming the standard curve underwent the same incubation conditions. In addition, we performed the experiments using cell numbers that only fall in the linear range of the standard curve to reduce error. A typical standard curve is shown in Figure 3.

Standard curve of HeLa cell absorbance at 492nm versus cell concentration.Figure 3. Standard curve of HeLa cell absorbance at 492nm versus cell concentration.

To determine the IC50 value using the standard curve method, a reading of the absorbance representing 104 cells (50% of the total population in each well) was specified. This absorbance value was then used to determine the IC50 value using the X-axis intercept of the dose-response curve, as described in the conventional method above.

Results

The IC50 value for each test chemical was determined using three replicates of each experiment. A comparison of the IC50 results for the conventional method versus the standard curve method is shown in Figure 4, and a comparison between the two IC50 determination methods is shown in Figure 5.

A comparison between IC50 values calculated by absorbance and cell number (1, glycerol; 2, malonic acid; 3, nicotine; 4, phenol; 5, potassium hydroxide; 6, sodium dichromate; 7, sodium hydroxide).Figure 4. A comparison between IC50 values calculated by absorbance and cell number (1, glycerol; 2, malonic acid; 3, nicotine; 4, phenol; 5, potassium hydroxide; 6, sodium dichromate; 7, sodium hydroxide).

Comparison between two methods of IC50 determination.Figure 5. Comparison between two methods of IC50 determination.
 

A ranking analysis was also conducted. The results of the analysis from both methods were identical, and in order of increasing toxicity, the chemicals ranked as follows: glycerol < phenol < nicotine < malonic acid < potassium hydroxide < sodium hydroxide < sodium dichromate. There was no significant difference between the conventional and standard curve methods using the student's t-test (p=0.12).

Discussion

In the conventional method of determining IC50 values, it is assumed that absorbance values are directly and precisely proportional to cell numbers. Therefore, as seen in Figure 2, it is presumed that absorbance value generated by the formula represents the absorbance value for 50% of the intact cells.

However, as evident in Figures 3 and 5, this is not the case. In fact, the absorbance value generated by 50% of intact cells according to the standard curve is greater than what is obtained using the formula. As a result, if the standard curve method of determining the IC50 absorbance value is considered, a lower value will be achieved. Therefore, it is concluded that the standard curve method generates a more accurate IC50 value.

Acknowledgment

The authors thank Dr. R. Rosen for his critical comments on this manuscript.

References

  1. Barile, F.A. et al. (1994) In vitro cytotoxicity testing for prediction of acute human toxicity. Cell Biol. Toxicol. 10, 155–62.
  2. Bondesson, I. et al. (1989) MEIC--a new international multicenter project to evaluate the relevance to human toxicity of in vitro cytotoxicity tests. Cell Biol. Toxicol. 5, 331–47.
  3. Clemedson, C. et al. (1996a) MEIC evaluation of acute systemic toxicity. 1. Methodology of 68 in vitro toxicity assays used to test the first 30 reference chemicals. Altern. Lab. Animal 24, 251.
  4. Clemedson, C. et al. (1996) MEIC evaluation of acute systemic toxicity. 2. In vitro results from 68 toxicity assays used to test the first 30 reference chemicals and a comparative cytotoxicity analysis. Altern. Lab. Animal 24, 273.
  5. Clemedson, C. and Ekwall, B. (1999) Overview of the final MEIC results: I. The in vitro-in vitro evaluation. Toxicol in Vitro 13, 657.
  6. Ekwall, B. (1999) Overview of the final MEIC results: II. The in vitro-in vivo evaluation, including the selection of a practical battery of cell tests for prediction of acute lethal blood concentrations in humans. Toxicol in Vitro 13, 665.
  7. Shrivastava, R. et al. (1992) Comparison of in vivo acute lethal potency and in vitro cytotoxicity of 48 chemicals. Cell Biol. Toxicol. 8, 157–70.
  8. Malich, G., Markovic B. and Winder, C. (1997) The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 124, 179–92.
  9. CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay Technical Bulletin, TB169, Promega Corporation.
  10. Morgan, S.J. and Darling, D.C. (1993) Animal Cell Culture, BIOS Scientific Publishers

Multiskan is a registered trademark of Labsystems Oy.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

Figures

Depiction of test sample layout of a 96 microwell plate.Figure 1. Depiction of test sample layout of a 96 microwell plate.
Conventional method of determining IC50 using the dose-response curve.Figure 2. Conventional method of determining IC50 using the dose-response curve.
Standard curve of HeLa cell absorbance at 492nm versus cell concentration.Figure 3. Standard curve of HeLa cell absorbance at 492nm versus cell concentration.
A comparison between IC50 values calculated by absorbance and cell number (1, glycerol; 2, malonic acid; 3, nicotine; 4, phenol; 5, potassium hydroxide; 6, sodium dichromate; 7, sodium hydroxide).Figure 4. A comparison between IC50 values calculated by absorbance and cell number (1, glycerol; 2, malonic acid; 3, nicotine; 4, phenol; 5, potassium hydroxide; 6, sodium dichromate; 7, sodium hydroxide).
Comparison between two methods of IC50 determination.Figure 5. Comparison between two methods of IC50 determination.

Prefer a different language?

Your country is set to Korea, Republic Of. Your language is set to 한국어. Please select the language that will best suit your needs:

This is correct, continue to site »

I need additional help

It appears that you have Javascript disabled. Our website requires Javascript to function correctly. For the best browsing experience, please enable Javascript.